Partial_FC

论文: https://arxiv.org/abs/2010.05222
代码: https://github.com/deepinsight/insightface/tree/master/recognition/partial_fc

动机

解决人脸识别中随着样本数量增大的情况下,GPU计算无法负载的情况。同时保证在低计算资源的情况下能够达到全类别分类的准确率
batch size=64,embedding dim=512情况下,实现8张2080ti分类1000w个类别;64个GPU分类1亿个类别

方法

作者发现,softmax中负类别对最终结果的影响并没那么重要,因此作者将众多类别细分为子集,采用聚类中心的方法来实现样本的分类。

近似策略

W是个d*C的矩阵,d为embedding为度,C为类别数量,N为batch size大小,fj表示全连阶层之后的激活特征

线性变换矩阵中每一列被视为一个类中心,对于样本xi,w_yi就是其类中心(第yi列)。如果想要选择一个子集来近似全类别的softmax,那么这个样本xi的正类中心w_yi必须被包括,只有这样模型的性能才能保持。
作者进行了两个消融实验来验证这个假设:

  • 第一个实验将该batch中所有将正类中心选择,然后负类进行随机采样(采样率0.1),称为正加随机负类(PPRN)
  • 第二个实验直接从所有类中心进行随机选择,采样率0.5
    训练过程中将xi和w_yi的平均余弦定义为:


实验结果表明PPRN下样本与聚类中心的平均余弦距离最短。

分布式近似

  • 权重矩阵W (d*C) 被分为k部分 [w1; w2; … ; wk] 其中k为GPU数量。对于样本xi,其label为yi,那么该样本的聚类中心为W的第yi列。那么当前GPU的正类中心即可得到,用w^p_i代表(batch size不为1,因此w^p_i也不止一个)
  • 根据上面的信息,每个GPU上的类中心总数为|wi|(wi的数量),正类中心总数为|w^p_i|(w^p_i的数量),然后负类中心的数量si通过随机采样得到,si=(|wi|-|w^p_i|)*r,r为PPRN的采样率。
  • 最后,我们将所有类中心进行softmax计算,Ws=[Wp, Wn]=[w^p_1, w^p_2, …, w^p_k, w^n_1, …, w^n_k],实际上Ws是在每张GPU上进行本地采样得到

代码

https://github.com/deepinsight/insightface/blob/master/recognition/arcface_torch/partial_fc_v2.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import math
from typing import Callable

import torch
from torch import distributed
from torch.nn.functional import linear, normalize


class PartialFC_V2(torch.nn.Module):
"""
https://arxiv.org/abs/2203.15565
A distributed sparsely updating variant of the FC layer, named Partial FC (PFC).
When sample rate less than 1, in each iteration, positive class centers and a random subset of
negative class centers are selected to compute the margin-based softmax loss, all class
centers are still maintained throughout the whole training process, but only a subset is
selected and updated in each iteration.
.. note::
When sample rate equal to 1, Partial FC is equal to model parallelism(default sample rate is 1).
Example:
--------
>>> module_pfc = PartialFC(embedding_size=512, num_classes=8000000, sample_rate=0.2)
>>> for img, labels in data_loader:
>>> embeddings = net(img)
>>> loss = module_pfc(embeddings, labels)
>>> loss.backward()
>>> optimizer.step()
"""
_version = 2

def __init__(
self,
margin_loss: Callable,
embedding_size: int,
num_classes: int,
sample_rate: float = 1.0,
fp16: bool = False,
):
"""
Paramenters:
-----------
embedding_size: int
The dimension of embedding, required
num_classes: int
Total number of classes, required
sample_rate: float
The rate of negative centers participating in the calculation, default is 1.0.
"""
super(PartialFC_V2, self).__init__()
assert (
distributed.is_initialized()
), "must initialize distributed before create this"
self.rank = distributed.get_rank()
self.world_size = distributed.get_world_size()

self.dist_cross_entropy = DistCrossEntropy()
self.embedding_size = embedding_size
self.sample_rate: float = sample_rate
self.fp16 = fp16

# 每张卡单独储存子矩阵Wk
self.num_local: int = num_classes // self.world_size + int(
self.rank < num_classes % self.world_size
)
self.class_start: int = num_classes // self.world_size * self.rank + min(
self.rank, num_classes % self.world_size
)
self.num_sample: int = int(self.sample_rate * self.num_local)
self.last_batch_size: int = 0

self.is_updated: bool = True
self.init_weight_update: bool = True
# 每张卡的子矩阵权重
self.weight = torch.nn.Parameter(torch.normal(0, 0.01, (self.num_local, embedding_size)))

# margin_loss
if isinstance(margin_loss, Callable):
# 边缘softmax定义,如ArcFace Loss
self.margin_softmax = margin_loss
else:
raise

def sample(self, labels, index_positive):
"""
This functions will change the value of labels
Parameters:
-----------
labels: torch.Tensor
pass
index_positive: torch.Tensor
pass
optimizer: torch.optim.Optimizer
pass
"""
with torch.no_grad():
# 获取正样本标签集合
positive = torch.unique(labels[index_positive], sorted=True).cuda()
if self.num_sample - positive.size(0) >= 0:
# 在所有本地类别中(num_local),生成一个随机分布(perm)
perm = torch.rand(size=[self.num_local]).cuda()
# 将正样本类别的分数赋值为2.0(大于随机[0,1)),保证正类别一定被选中
perm[positive] = 2.0
# 用topk选取分数最高的num_sample个类别
index = torch.topk(perm, k=self.num_sample)[1].cuda()
# 再排序(sort),得到最终采样类别下标index
index = index.sort()[0].cuda()
else:
index = positive
self.weight_index = index

# searchsorted返回labels[index_positive]在index中的插入位置,即在采样类别的下标
labels[index_positive] = torch.searchsorted(index, labels[index_positive])

# 返回采样权重,即聚类中心
return self.weight[self.weight_index]

def forward(
self,
local_embeddings: torch.Tensor,
local_labels: torch.Tensor,
):
"""
Parameters:
----------
local_embeddings: torch.Tensor
feature embeddings on each GPU(Rank).
local_labels: torch.Tensor
labels on each GPU(Rank).
Returns:
-------
loss: torch.Tensor
pass
"""
# 格式转化
local_labels.squeeze_()
local_labels = local_labels.long()

# 分布式训练确保batch size相同
batch_size = local_embeddings.size(0)
if self.last_batch_size == 0:
self.last_batch_size = batch_size
assert self.last_batch_size == batch_size, (
f"last batch size do not equal current batch size: {self.last_batch_size} vs {batch_size}")

# 聚合所有GPU上的embedding和label
_gather_embeddings = [
torch.zeros((batch_size, self.embedding_size)).cuda()
for _ in range(self.world_size)
]
_gather_labels = [
torch.zeros(batch_size).long().cuda() for _ in range(self.world_size)
]
_list_embeddings = AllGather(local_embeddings, *_gather_embeddings)
distributed.all_gather(_gather_labels, local_labels)

embeddings = torch.cat(_list_embeddings)
labels = torch.cat(_gather_labels)

# 计算哪些样本的类别属于本地负责范围,不属于本地的标签置为-1,这些样本本轮不参与本地权重计算
labels = labels.view(-1, 1)
index_positive = (self.class_start <= labels) & (
labels < self.class_start + self.num_local
)
labels[~index_positive] = -1
# 属于本地的标签编号减去 class_start,映射到 [0, num_local) 区间
labels[index_positive] -= self.class_start

# 采样权重,即聚类中心数量
if self.sample_rate < 1:
weight = self.sample(labels, index_positive)
else:
weight = self.weight

# 对embedding和权重W进行归一化,并计算点积
with torch.cuda.amp.autocast(self.fp16):
norm_embeddings = normalize(embeddings)
norm_weight_activated = normalize(weight)
# 其实就是矩阵相乘,得到点积矩阵
logits = linear(norm_embeddings, norm_weight_activated)
if self.fp16:
logits = logits.float()
# clamp 在 [-1, 1],防止后续数值爆炸
logits = logits.clamp(-1, 1)

# 边缘softmax,如ArcFace
logits = self.margin_softmax(logits, labels)
# 计算分布式环境下的交叉熵损失,定义见下面
loss = self.dist_cross_entropy(logits, labels)
return loss

# 损失函数定义
class DistCrossEntropyFunc(torch.autograd.Function):
"""
CrossEntropy loss is calculated in parallel, allreduce denominator into single gpu and calculate softmax.
Implemented of ArcFace (https://arxiv.org/pdf/1801.07698v1.pdf):
"""

@staticmethod
def forward(ctx, logits: torch.Tensor, label: torch.Tensor):
""" """
batch_size = logits.size(0)
# for numerical stability
max_logits, _ = torch.max(logits, dim=1, keepdim=True)
# local to global
distributed.all_reduce(max_logits, distributed.ReduceOp.MAX)
logits.sub_(max_logits)
logits.exp_()
sum_logits_exp = torch.sum(logits, dim=1, keepdim=True)
# local to global
distributed.all_reduce(sum_logits_exp, distributed.ReduceOp.SUM)
logits.div_(sum_logits_exp)
index = torch.where(label != -1)[0]
# loss
loss = torch.zeros(batch_size, 1, device=logits.device)
loss[index] = logits[index].gather(1, label[index])
distributed.all_reduce(loss, distributed.ReduceOp.SUM)
ctx.save_for_backward(index, logits, label)
return loss.clamp_min_(1e-30).log_().mean() * (-1)

@staticmethod
def backward(ctx, loss_gradient):
"""
Args:
loss_grad (torch.Tensor): gradient backward by last layer
Returns:
gradients for each input in forward function
`None` gradients for one-hot label
"""
(
index,
logits,
label,
) = ctx.saved_tensors
batch_size = logits.size(0)
one_hot = torch.zeros(
size=[index.size(0), logits.size(1)], device=logits.device
)
one_hot.scatter_(1, label[index], 1)
logits[index] -= one_hot
logits.div_(batch_size)
return logits * loss_gradient.item(), None


class DistCrossEntropy(torch.nn.Module):
def __init__(self):
super(DistCrossEntropy, self).__init__()

def forward(self, logit_part, label_part):
return DistCrossEntropyFunc.apply(logit_part, label_part)


class AllGatherFunc(torch.autograd.Function):
"""AllGather op with gradient backward"""

@staticmethod
def forward(ctx, tensor, *gather_list):
gather_list = list(gather_list)
distributed.all_gather(gather_list, tensor)
return tuple(gather_list)

@staticmethod
def backward(ctx, *grads):
grad_list = list(grads)
rank = distributed.get_rank()
grad_out = grad_list[rank]

dist_ops = [
distributed.reduce(grad_out, rank, distributed.ReduceOp.SUM, async_op=True)
if i == rank
else distributed.reduce(
grad_list[i], i, distributed.ReduceOp.SUM, async_op=True
)
for i in range(distributed.get_world_size())
]
for _op in dist_ops:
_op.wait()

grad_out *= len(grad_list) # cooperate with distributed loss function
return (grad_out, *[None for _ in range(len(grad_list))])


Partial_FC
https://guokent.github.io/papernotes/partial_fc/
作者
Kent
发布于
2025年8月26日
许可协议