1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
| import math from typing import Callable
import torch from torch import distributed from torch.nn.functional import linear, normalize
class PartialFC_V2(torch.nn.Module): """ https://arxiv.org/abs/2203.15565 A distributed sparsely updating variant of the FC layer, named Partial FC (PFC). When sample rate less than 1, in each iteration, positive class centers and a random subset of negative class centers are selected to compute the margin-based softmax loss, all class centers are still maintained throughout the whole training process, but only a subset is selected and updated in each iteration. .. note:: When sample rate equal to 1, Partial FC is equal to model parallelism(default sample rate is 1). Example: -------- >>> module_pfc = PartialFC(embedding_size=512, num_classes=8000000, sample_rate=0.2) >>> for img, labels in data_loader: >>> embeddings = net(img) >>> loss = module_pfc(embeddings, labels) >>> loss.backward() >>> optimizer.step() """ _version = 2
def __init__( self, margin_loss: Callable, embedding_size: int, num_classes: int, sample_rate: float = 1.0, fp16: bool = False, ): """ Paramenters: ----------- embedding_size: int The dimension of embedding, required num_classes: int Total number of classes, required sample_rate: float The rate of negative centers participating in the calculation, default is 1.0. """ super(PartialFC_V2, self).__init__() assert ( distributed.is_initialized() ), "must initialize distributed before create this" self.rank = distributed.get_rank() self.world_size = distributed.get_world_size()
self.dist_cross_entropy = DistCrossEntropy() self.embedding_size = embedding_size self.sample_rate: float = sample_rate self.fp16 = fp16 self.num_local: int = num_classes // self.world_size + int( self.rank < num_classes % self.world_size ) self.class_start: int = num_classes // self.world_size * self.rank + min( self.rank, num_classes % self.world_size ) self.num_sample: int = int(self.sample_rate * self.num_local) self.last_batch_size: int = 0
self.is_updated: bool = True self.init_weight_update: bool = True self.weight = torch.nn.Parameter(torch.normal(0, 0.01, (self.num_local, embedding_size)))
if isinstance(margin_loss, Callable): self.margin_softmax = margin_loss else: raise
def sample(self, labels, index_positive): """ This functions will change the value of labels Parameters: ----------- labels: torch.Tensor pass index_positive: torch.Tensor pass optimizer: torch.optim.Optimizer pass """ with torch.no_grad(): positive = torch.unique(labels[index_positive], sorted=True).cuda() if self.num_sample - positive.size(0) >= 0: perm = torch.rand(size=[self.num_local]).cuda() perm[positive] = 2.0 index = torch.topk(perm, k=self.num_sample)[1].cuda() index = index.sort()[0].cuda() else: index = positive self.weight_index = index
labels[index_positive] = torch.searchsorted(index, labels[index_positive])
return self.weight[self.weight_index]
def forward( self, local_embeddings: torch.Tensor, local_labels: torch.Tensor, ): """ Parameters: ---------- local_embeddings: torch.Tensor feature embeddings on each GPU(Rank). local_labels: torch.Tensor labels on each GPU(Rank). Returns: ------- loss: torch.Tensor pass """ local_labels.squeeze_() local_labels = local_labels.long()
batch_size = local_embeddings.size(0) if self.last_batch_size == 0: self.last_batch_size = batch_size assert self.last_batch_size == batch_size, ( f"last batch size do not equal current batch size: {self.last_batch_size} vs {batch_size}")
_gather_embeddings = [ torch.zeros((batch_size, self.embedding_size)).cuda() for _ in range(self.world_size) ] _gather_labels = [ torch.zeros(batch_size).long().cuda() for _ in range(self.world_size) ] _list_embeddings = AllGather(local_embeddings, *_gather_embeddings) distributed.all_gather(_gather_labels, local_labels)
embeddings = torch.cat(_list_embeddings) labels = torch.cat(_gather_labels)
labels = labels.view(-1, 1) index_positive = (self.class_start <= labels) & ( labels < self.class_start + self.num_local ) labels[~index_positive] = -1 labels[index_positive] -= self.class_start
if self.sample_rate < 1: weight = self.sample(labels, index_positive) else: weight = self.weight
with torch.cuda.amp.autocast(self.fp16): norm_embeddings = normalize(embeddings) norm_weight_activated = normalize(weight) logits = linear(norm_embeddings, norm_weight_activated) if self.fp16: logits = logits.float() logits = logits.clamp(-1, 1)
logits = self.margin_softmax(logits, labels) loss = self.dist_cross_entropy(logits, labels) return loss
class DistCrossEntropyFunc(torch.autograd.Function): """ CrossEntropy loss is calculated in parallel, allreduce denominator into single gpu and calculate softmax. Implemented of ArcFace (https://arxiv.org/pdf/1801.07698v1.pdf): """
@staticmethod def forward(ctx, logits: torch.Tensor, label: torch.Tensor): """ """ batch_size = logits.size(0) max_logits, _ = torch.max(logits, dim=1, keepdim=True) distributed.all_reduce(max_logits, distributed.ReduceOp.MAX) logits.sub_(max_logits) logits.exp_() sum_logits_exp = torch.sum(logits, dim=1, keepdim=True) distributed.all_reduce(sum_logits_exp, distributed.ReduceOp.SUM) logits.div_(sum_logits_exp) index = torch.where(label != -1)[0] loss = torch.zeros(batch_size, 1, device=logits.device) loss[index] = logits[index].gather(1, label[index]) distributed.all_reduce(loss, distributed.ReduceOp.SUM) ctx.save_for_backward(index, logits, label) return loss.clamp_min_(1e-30).log_().mean() * (-1)
@staticmethod def backward(ctx, loss_gradient): """ Args: loss_grad (torch.Tensor): gradient backward by last layer Returns: gradients for each input in forward function `None` gradients for one-hot label """ ( index, logits, label, ) = ctx.saved_tensors batch_size = logits.size(0) one_hot = torch.zeros( size=[index.size(0), logits.size(1)], device=logits.device ) one_hot.scatter_(1, label[index], 1) logits[index] -= one_hot logits.div_(batch_size) return logits * loss_gradient.item(), None
class DistCrossEntropy(torch.nn.Module): def __init__(self): super(DistCrossEntropy, self).__init__()
def forward(self, logit_part, label_part): return DistCrossEntropyFunc.apply(logit_part, label_part)
class AllGatherFunc(torch.autograd.Function): """AllGather op with gradient backward"""
@staticmethod def forward(ctx, tensor, *gather_list): gather_list = list(gather_list) distributed.all_gather(gather_list, tensor) return tuple(gather_list)
@staticmethod def backward(ctx, *grads): grad_list = list(grads) rank = distributed.get_rank() grad_out = grad_list[rank]
dist_ops = [ distributed.reduce(grad_out, rank, distributed.ReduceOp.SUM, async_op=True) if i == rank else distributed.reduce( grad_list[i], i, distributed.ReduceOp.SUM, async_op=True ) for i in range(distributed.get_world_size()) ] for _op in dist_ops: _op.wait()
grad_out *= len(grad_list) return (grad_out, *[None for _ in range(len(grad_list))])
|